
Automation part 2
Web link

https://stakahama.gitlab.io/sie-eng270/python_shell_string.html

From the project description

What this means

• Inputs and outputs are fixed by your program.
• GUIs are superfluous
• Do not query for user input through the command line (slow, possibly not reproducible)
• program outputs should be traceable to their inputs

• One shell script should carry out a series of instructions that runs various
programs to produce the output from your input. (Instructions for compilation of C
code can be included separately.)

• The outputs should correspond to figures/tables/numbers for scenarios you write
about in your report.

Generation of results should be automated - tables,

calculations, figures in your report should be generated

within a single command/script (as much as possible).

How can the program be run on another
machine?

• Declare all dependencies (packages, programs, and their version numbers).

• there are tools to facilitate this called virtual environments, Docker, etc.

• virtual environments started with Python and conventionally did not handle gcc (but
possible now)

• MATLAB does not have virtual environments but may require special toolboxes

• it is only necessary to list dependencies in a file for the project submission

• Do not use absolute path names – use relative path names.

• Do not submit your compiled executable file.

• specificity: compiled files are specific to the type of machine you compiled on

• safety: executable files could carry out harmful instructions

Project directory structure

• There are many project templates

• Depends on project needs – there is no
“single” template to follow

• General principles – separate different
elements into different directories

• raw data
• processed data
• results
• documentation
• code

• README or README.md in the root
directory to describe directory contents

 Repository

 ┣ .github : contain the github settings

 ┃ ┗ ISSUE_TEMPLATE : contains issues templates

 ┃ ┗ *.yaml

 ┃ ┗ workflows : contains CICD processes

 ┃ ┣ code_quality.yml : Ruff + Black + mypy

 ┃ ┗ tests.yml : pytest + CodeCov

 ┣ docs: contains the documentation.

 ┣ project_name: contains the project code.

 ┃ ┗ *.py

 ┃ ┗ notebooks

 ┃ ┗ *.ipynb

 ┣ test: contains the project tests.

 ┃ ┗ test_*.py

 ┣ _config.yml: config file for the github pages

documentation.

 ┣ .gitignore: lists the files/folders to ignore for git.

 ┣ pre-commit-config.yaml: configuration file for pre-

commit.

 ┣ CITATION.cff: citation information.

 ┣ CODE_OF_CONDUCT.md: code of conduct.

 ┣ CONTRIBUTING.md: contributing guidelines.

 ┣ Dockerfile

 ┣ LICENSE: license file.

 ┣ pyproject.toml: project configuration file.

 ┣ README.md: markdown file containing the project's

readme.

 ┣ readthedocs.yml: Settings for readthedocs.

python ENAC-IT4R template

Example – not necessary to use this template

https://enacit4r.notion.site/IT4R-Python-project-template-eca32ebf56e44a79a55faf2d57b5a796?pvs=4

Example repository
for class project

https://github.com/stakahama/sie-
eng270-projectexample

• Recommended structure for this
project.

• Get practice in using multiple folders
(even if ENG270 project is small).

• Not necessary to follow this
structure exactly if there are
compelling reasons to deviate from
it.

https://github.com/stakahama/sie-eng270-projectexample
https://github.com/stakahama/sie-eng270-projectexample

Absolute vs. relative paths

• No: “C:/Users/username/Desktop/myproject/data/” or
“/Users/username/Desktop/myproject/data/”

• Yes: “./data” or “../data/” relative to code location or project root

• There are ways to define project root directory (e.g., in Python) but they
can be overly complicated for small projects.

• You can either use ‘..’ syntax or include the relative path in a configuration
file in the code directory (a text file with some repeatedly-used settings,
often defined as a key-value pair) in the same directory.

https://stackoverflow.com/questions/25389095/python-get-path-of-root-project-structure

Organizing your code into libraries

Canonical approach for packaging code into
thematically cohesive units where parts can
be reused in other projects:

• modules in Python

• libraries in C

• toolboxes in MATLAB

These modules must then be installed by
the user to run your programs. These
libraries can then be imported for any other
program you write on your computer.

For smaller projects and the purposes of the
project submission, the approaches above
are not recommended as they require
separate installation of the modules/
libraries/ toolboxes to reproduce results.

Simpler, recommended approach – create
local libraries:

• Python: create empty __init__.py file in
your code directory and you can import
other .py files as modules locally (without
installation)

• C: use header files and make files

• MATLAB: put all your functions in a
subfolder and use addpath

The local libraries above are available when
running code from your project directory, but
not elsewhere.

Appropriate when modularizing code that is
specific to the project. (Recommended for
your project.)

https://sieprog.ch/#module-python
https://sieprog.ch/#inclure-bibliotheque
https://ch.mathworks.com/help/matlab/matlab_prog/create-and-share-custom-matlab-toolboxes.html
https://readthedocs.web.cern.ch/pages/viewpage.action?pageId=238092978
https://sieprog.ch/#h
https://sieprog.ch/#make
https://ch.mathworks.com/help/matlab/ref/addpath.html

Modules/libraries

• Breaking your code up into smaller collections of related functions and
variables increases clarity when code base becomes larger.

• Modules can potentially be used in other programs.

Shell scripting

• Create and delete files/directories.

• Move files/directories around.

• What you do with the Finder (macOS) or Explorer (Windows), you can do
with a series of shell commands in bash or Python. Include these shell
commands in a script and automate the process.

• Your code should process the input and place the results in a separate
directory without you having to manually move it (or having to ask the user
to manually move it).

Text processing

• Generate file names and directories for reading/writing

• Parse information from file names

• Automate labeling

• Clean data

Common text processing operations

• Concatenate

• Format

• Split

• Strip (whitespace)

• Replace

• Substring

• Regular expressions expand capability for pattern matching and
substitution/replacement

	Slide 1: Automation part 2
	Slide 2: From the project description
	Slide 3: How can the program be run on another machine?
	Slide 4: Project directory structure
	Slide 5: Example repository for class project
	Slide 6: Absolute vs. relative paths
	Slide 7: Organizing your code into libraries
	Slide 8: Modules/libraries
	Slide 9: Shell scripting
	Slide 10: Text processing
	Slide 11: Common text processing operations

